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Abstract. Phonon focusing in periodic superlattices is studied in terms of the plane-wave
expansion method rather than the conventional transfer matrix method. At the frequencies
where the intramode and intermode Bragg reflections of phonons occur the group velocity of
phonons along the growth direction vanishes, giving rise to the disappearance and/or appearance
of phonon caustics. This can be explicitly shown by plotting theoretical phonon images in the
planes both normal and perpendicular to the growth direction. Numerical examples are given
for (001)GaAs/AlAs superlattices.

1. Introduction

The energy transport associated with lattice vibrations is governed by the group velocity of
acoustic phonons. The spatial distribution of the phonon group velocities in a crystalline
solid is highly anisotropic and the focusing and defocusing of ballistically propagating
phonons have been observed experimentally [1]. The phonon imaging method reveals
vividly how acoustic energy emanating from a point source is distributed in a crystal lattice
[2]. In synthetic superlattices the zone folding effect due to the periodicity along the
growth direction considerably modifies the phonon dispersion relations from those in bulk
materials [3]. Specifically, the frequency gaps appear at the centre and boundaries of the
folded Brillouin zone originating from intramode Bragg reflections at phonon wavelengths
much longer than the lattice spacing. In addition, the existence of three phonon polarizations
and their couplings induce the intrazone frequency gaps which are attributed to intermode
Bragg reflections [4–6]. As a result, phonon group velocities and the resulting acoustic
energy transport are expected to be highly frequency dependent and to exhibit quite different
characteristics from bulk solids even in a low-energy region.

Recently, acoustic phonon propagation in multilayered systems has been a subject
of considerable attention. Anomalous reductions of lattice thermal conductivity in
semiconducting superlattices have been observed for a wide range of temperatures [7]
and it is suggested that the modification of the phonon group velocity in the multilayered
system plays an essential role for this phenomenon [8]. Also the thermal conductivity in the
ferroelectric KDP sample in a multidomained state has been measured. The mode-dependent
scattering of phonons from the ‘internal’ interfaces, i.e. domain walls, is considered to be
the origin of the observed decrease in thermal conductivity [9, 10].

The purpose of the present work is to elucidate theoretically the ballistic phonon
propagation in periodic superlattices. In particular, we consider how the intramode and
intermode Bragg reflections affect the acoustic energy transport in superlattices. Thus,
we concentrate our attention on the spatial distribution of phonons emitted from a point
source. The results are presented by displaying theoretical phonon images (spatial maps
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of the phonon group velocities) in the planes both normal and perpendicular to the growth
direction of superlattices.

Here, it should be noted that phonon imaging experiments with periodic superlattices
InGaAs/AlAs and GaAs/AlAs were conducted several years ago [5, 6] to verify the predicted
internal gaps in phonon dispersion relations associated with intermode phonon Bragg
reflections [4]. In these experiments the acoustic energy or group velocities of phonons
transmitted throughthin (typically 3µm) periodic superlattices deposited on a thick GaAs
substrate (400µm) were measured. Thus, the group-velocity distributions in the images
observed are essentially those in thesubstratematerial (GaAs) which is much thicker than
the superlattice deposited on it [11, 12]. No information is obtained about group-velocity
distribution inside the GaAs/AlAs superlattice because the superlattice is very thin.

The major role of the superlattices in those experiments is just to filter out the phonons
within certain frequency windows, i.e. phonon stop bands. The existence of the phonon
stop bands is recognized in the images as sharp reductions of transmitted phonon intensity
with spatially anisotropic shapes. These shapes are frequency dependent but the background
phonon image (phonon focusing in the GaAs substrate) is not altered even when the phonon
frequency is changed in the sub-THz region. In contrast, the present study deals with
the energy transport of phonons inside the superlattice itself and makes it clear how the
phonons propagate in a superlattice across the layer interfaces. The predicted phonon
images (phonon focusing patterns) or the group-velocity distributions of phonons in the
GaAs/AlAs superlattice are changed quite markedly depending on frequency even in the
sub-THz region, leading to the appearance or disappearance of phonon caustics. The validity
of our predictions will be verified by phonon transmission or imaging experiments with a
superlattice alone or with a superlattice and a substrate where the superlattice is much thicker
than the substrate.

2. Formulation

We consider the system consisting of an infinite repetition of alternating layers of materialsA

(with thicknessdA, mass densityρA and elastic stiffness tensorcijmnA ) andB (with thickness
dB , mass densityρB and elastic stiffness tensorcijmnB ). The interfaces are parallel to the
x‖ = (x, y) = (x1, x2) plane, with thez axis (x3 axis) normal to the interfaces (see figure 1).
BothA andB materials are cubic crystals and elastic anisotropy is taken into account. The
equation governing the motion of lattice displacementu(r, t) of the system is given by

ρ(z)üi = ∂j [cijmn(z)∂num] (i = 1, 2, 3) (1)

wherer = (x‖, z), ρ(z) and cijmn(z) are the position-dependent mass density and elastic
stiffness tensor, and the summation convention over repeated indices is assumed. Usually,
equation (1) is solved with a transfer matrix which connects the vibrational amplitudes of
adjacent layers [6]. In the present work we use the Fourier expansion method to solve
equation (1)

u(r, t) = ei(k‖·x‖−ωt)
∑
`

ei(kz+G`)za` (2)

ρ(z) =
∑
`

eiG`zρ` (3)

cijmn(z) =
∑
`

eiG`zc
ijmn

` (4)
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wherek ≡ (k‖, kz) is the wavevector,G` = 2π`/D with ` an integer andD = dA + dB
is the periodicity. The Floquet theorem required for a one-dimensional periodic system is
satisfied byu given above and the Fourier coefficients take the form

f0 = (FAdA + FBdB)/D (5)

f` = (FA − FB)1− e−2π i`dA/D

2π i`
(` 6= 0) (6)

wheref` = (ρ`, cijmn` ), FI = (ρI , cijmnI ) with I = A and B, andf` should be replaced by
f2` = 0 andf2`+1 = (FA − FB)/(2`+ 1)π i if dA = dB .

Figure 1. A periodic superlattice consisting of alternateA andB layers. The layer interfaces are
parallel to thex–y plane and the growth direction is parallel to thez axis. The solid lines in the
x–y, y–z and z–x sections illustrate the group-velocity curves of the slow transverse phonons
and dashed lines with arrows indicate caustic directions. The phonon image on thex–y plane
is shown schematically.

Substituting equations (2) to (4) into (1), we obtain an eigenvalue equation∑
n

(ω2ρ̃m,n − M̃m,n)an = 0 (m = 0,±1,±2, . . .) (7)

whereρ̃m,n andM̃m,n for given m andn are 3× 3 matrices and their elements are

(ρ̃m,n)ij = ρm−nδij (8)

(M̃m,n)11 = C11
m−nk

2
x + C44

m−n[k
2
y + (kz +Gm)(kz +Gn)] (9)

(M̃m,n)12 = (M̃m,n)21 = (C12
m−n + C44

m−n)kxky (10)

(M̃m,n)13 = C12
m−nkx(kz +Gn)+ C44

m−nkx(kz +Gm) (11)

(M̃m,n)22 = C11
m−nk

2
y + C44

m−n[k
2
x + (kz +Gm)(kz +Gn)] (12)

(M̃m,n)23 = C12
m−nky(kz +Gn)+ C44

m−nky(kz +Gm) (13)
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(M̃m,n)31 = C12
m−nkx(kz +Gm)+ C44

m−nkx(kz +Gn) (14)

(M̃m,n)32 = C12
m−nky(kz +Gm)+ C44

m−nky(kz +Gn) (15)

(M̃m,n)33 = C11
m−n(kz +Gm)(kz +Gn)+ C44

m−n(k
2
x + k2

y). (16)

In the above equations (8)–(16),Cij` are the Fourier coefficients of the elastic constants
Cij (z) which are related tocijmn(z) in the usual way. Thus, the frequencies and eigenvectors
of phonons in a superlattice are obtained by solving equation (7). The expression for the
group velocityV of phonons is also derived from equation (7). The result is

V = ∂ω

∂k
=

∑
m,n(a

t
m)
∗ ∂M̃m,n

∂k
an

2ω
∑

m,n(a
t
m)
∗ρ̃m,nan

(17)

where the superscriptt means the transposition.
The periodicity along the growth direction of a superlattice induces the folding of the

dispersion curves of phonons into a mini Brillouin zone of the sizekz = 2π/D. At the
centre (kz = 0) and boundaries (kz = ±π/D) of this folded Brillouin zone, the phonon
dispersion curves are flat, i.e.∂ω/∂kz = 0, implying that the group velocity of phonons
is parallel to the layer interfaces and no energy propagation along the growth direction of
superlattices is allowed.

3. Numerical results

We present the numerical results for periodic (001) GaAs/AlAs superlattices with the same
thickness of constituent layers, i.e.dA = dB [13]. Figure 2 shows the dispersion relations
of phonons propagating both normally and obliquely to the layer interfaces. The number of
plane waves kept in the expansions (2) to (4) is seven, i.e.` = −3 to 3. The convergence
has been checked by the fact that the dispersion curves calculated do not change at all even
if we increase the number further. We also confirmed that the dispersion curves obtained
are identical to the ones previously obtained with the transfer-matrix method [4–6]. This
means that the Gibbs phenomenon characteristic of the Fourier-series expansion does not
cause any inaccuracy of the calculations.

Here we note that, for the oblique case, the propagation direction (wavevector direction)
of the longitudinal (L) mode in the GaAs layer isθ = 30◦ rotated from the growth direction
in the (010) plane. For the normal propagation two transverse (T) branches are degenerate
and the frequency gaps are found only at the edges and centre of the folded Brillouin zone.
For the oblique propagation the T phonons are split into fast transverse (FT) and slow
transverse (ST) phonons, and an intrazone frequency gap in addition to the zone edge and
zone centre gaps occurs due to the coupling of the different phonon polarizations (the L
and ST phonons in the present case). Note that no intrazone gap is found for the normal
propagation because of the decoupling of three phonon polarizations.

In the following we consider three typical frequenciesωD/v0 = 2, 3.2 and 4.1
(v0 = (C44

GaAs/ρGaAs)
1/2 = 3.33× 105 cm s−1). The lowest frequency (ωD/v0 = 2) is

in the frequency bands for three polarizations and the corresponding wavelengths are much
longer than the unit periodD. The second one (ωD/v0 = 3.2) is at the edge of the lowest
frequency gap of the T mode for the normal propagation but this frequency is found inside
the gap of the ST mode for a finite range of propagation angles oblique to the interface.
The third one (ωD/v0 = 4.1) is close to the frequency at which the dispersion curves
of the L and folded ST branches intersect at normal propagation. For a certain range of
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Figure 2. Dispersion relations of phonons in the periodic (001) GaAs/AlAs superlattice with
equal thicknesses of layers. The propagation direction (wavevector direction) of the longitudinal
(L) mode in the GaAs layer is inside the (010) plane and (a) θ = 0◦ (normal to the interfaces)
and (b) θ = 30◦ rotated from the growth direction. The propagation angles of two transverse
(T) modes (fast transverse (FT) and slow transverse (ST)) are determined from the conservation
of k‖.

propagation angles this frequency is found inside the intrazone frequency gap due to the
intermode Bragg reflection between the L and ST modes.

3.1. ωD/v0 = 2

At this frequency the constant-frequency surfaces (ω surfaces or slowness surfaces) of three
phonon modes are entirely located inside the folded Brillouin zone and their sections in
the (010) plane and the corresponding sections of the group-velocity surfaces are shown
in figures 3(a) and 3(b), respectively. Theω curves (the sections ofω surfaces) of three
phonon modes are deformed from circles due to the elastic anisotropy of the system. The
folding of the group-velocity curves of the ST mode at the points A and B arises from the
presence of the inflection points A and B in theω curve which separate the convex region
from the concave region. Here, it should be noted that additional group-velocity curves
not shown in figure 3(b) exist in the (010) plane. They originate from the phonons with
wavevectors out of the (010) plane but with the group-velocity vectors parallel to this plane.
This means that the group-velocity surfaces in anisotropic, elastic media are multivalued in
general.

The images of phonons in thex–y andy–z planes are shown in figures 3(c) and 3(d).
These images span−1 < x/L, y/L, z/L < 1, whereL is the length between the phonon
source and the imaging plane and the brightness measures the relative phonon intensity.
We note that the images are valid forL� D because we assume perfect periodicity of the
superlattice.

At this given frequency the wavelengths of the three modes of phonons are much longer
than the unit periodD and hence the phonons are essentially those in the bulk crystal with
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Figure 3. The results forωD/v0 = 2. (a) The sections by the (010) plane of the constant-
frequency surfaces of the longitudinal (L), fast transverse (FT) and slow transverse (ST) phonons.
(b) Group-velocity curves corresponding to the phonons in the constant-frequency curves shown
in (a). (c) Phonon image in the plane parallel to the layer interfaces (thex–y plane). (d) Phonon
image in the plane normal to the layer interfaces (they–z plane). The points labelled A and
B correspond to the inflection points on the constant-frequency curve of the ST mode, giving
rise to the foldings (caustics) in the group-velocity curve and the boundary points of the strong
focusing regions in the images.

the mass density and elastic constants averaged over constituent materials. We find no
particular difference between the phonon images in the planes parallel (x–y plane) and
normal (y–z plane) to the interfaces. Both images are characterized by the box structures at
the centre (due to the ST phonons), the narrow focusing regions extending both vertically
and horizontally (due to the FT phonons) and the diagonal focusing structures with cuspidal
structures around(x/L, y/L) = (±0.7,±0.7) (due to the ST phonons). As expected, these
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Figure 3. Continued

phonon-focusing characteristics are very similar to those of bulk GaAs published in the
literature [11, 12].

3.2. ωD/v0 = 3.2

The (010) sections of the constant-frequency and the corresponding group-velocity curves
are shown in figures 4(a) and 4(b), respectively. At this frequency certain portions of the
ω curve (including several inflection points) of the outermost ST branch are removed from
the Brillouin zone. This is due to the occurrence of the frequency gap at the folded zone
boundary for a finite range of the propagation direction (see figure 2(b)). This also brings
the caustics of the slow transverse mode near the growth direction (theVz axis) into the
frequency gap. Here it is important to note that at the points where the slowness curve
intersects the boundaries of the Brillouin zone, thez component of the normal vector of this
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Figure 4. The results forωD/v0 = 3.2. (a) The sections by the (010) plane of the constant-
frequency surfaces of the longitudinal (L), fast transverse (FT) and slow transverse (ST) phonons.
Dashed lines are the boundaries between the first and second Brillouin zones. (b) Group-velocity
curves corresponding to the constant-frequency curves shown in (a). (c) Phonon image in the
plane parallel to the layer interfaces (thex–y plane). Several corresponding points on the
constant-frequency and group-velocity curves are labelled, C, D, D′ and E.

curve vanishes, implying thatVz = 0. Thus, the group-velocity curve of the ST mode near
theVz axis bends markedly towards theVx axis as shown in figure 4(b) (points D and D′)
and the ST caustics (those corresponding to point A in figure 3) disappear from the curve.

As a result, the box structure of high phonon intensity at the centre of thex–y plane
image, which is characteristic of low frequencies (see figure 3(c)), cannot be seen in
figure 4(c). However, almost no change is recognized in the image in they–z plane (hence
it is not shown here) as can be expected from the similarity of the largeVx parts of the
group-velocity curves shown in figures 3(b) and 4(b).
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Figure 4. Continued

3.3. ωD/v0 = 4.1

The (010) sections of theω curves and the corresponding group-velocity curves are shown
in figures 5(a) and 5(b). The structures of both kinds of curves are much more complicated
than those of the previous cases. An interesting feature is the coalescence of the innermost
curve of the L mode and the one folded from the outermost ST curve (at the points close to
F and G, for instance), which induces the gap (absence of the branch around these points)
physically interpreted as an intermode Bragg reflection. The existence of this gap forces
the group-velocity curves of the L and ST modes to deform again towardsVz = 0. This
effect produces the foldings of the group-velocity curves of L and ST modes, leading to the
occurrence of the caustics at the points F and G. At the same time the caustics at H and J
occur due to the intramode Bragg reflections of transverse phonons.

A remarkable feature of these effects is seen in the phonon images shown in figure 5(c)
(plotted for the slightly expanded region−1.2< x/L, y/L < 1.2) and figure 5(d) (plotted
for the region−1 < y/L, z/L < 1). In the image of thex–y plane a new circular caustic
(passing through the point G) of the L mode of radius about∼L can be seen. This caustic is
also recognized in the image of they–z plane. Also in they–z plane we find the truncation
of the vertical FT focusing regions at aboutz/L = 0.8 (at the point H close to G).

4. Concluding remarks

In the present work we have studied the phonon focusing in a periodic superlattice consisting
of alternating GaAs and AlAs layers. The Brillouin-zone folding characteristic of an
artificially periodic system leads to the occurrence of zone-centre, zone-edge and internal
gaps in the phonon dispersion relations at frequencies much lower than those of the bulk
materials. These frequency gaps affect considerably the acoustic energy propagation in
superlattices. Specifically, the disappearance and/or appearance of phonon caustics is found.
The effects are entirely caused by the periodicity of the layering system and hence are more
conspicuous in the direction perpendicular to the layer interfaces than that parallel to the
interfaces. These new predictions should be verified by a phonon transmission experiment
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Figure 5. The results forωD/v0 = 4.1. (a) The sections by the (010) plane of the constant-
frequency surfaces of the longitudinal (L), fast transverse (FT), and slow transverse (ST)
phonons. (b) Group-velocity curves corresponding to the constant-frequency curves shown
in (a). The curves in the first quadrant are shown. (c) Phonon image in the plane parallel to the
layer interfaces (thex–y plane). The inset shows a magnification of the centre of the image.
(d) Phonon image in the plane normal to the layer interfaces (they–z plane). The inset shows a
magnification of the rectangular region at the corner of the box structure. Several corresponding
points on the constant-frequency and group-velocity curves are labelled, F, G, H, I and J.

with a thick periodic superlattice in which the angular dependence of the ballistic phonon
propagation inside the superlattice may be resolved. We hope that our predictions stimulate
further imaging or transmission experiments with a superlattice alone or with a superlattice
much thicker than the substrate.

The formulation developed in this work could also be applied to the ballistic energy
transport of phonons in materials with multidomain structures (with alternating electrical
polarizations) like KDP. In the analysis of the heat transport in ferroelectric KDP (with
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Figure 5. Continued

about 400 domain walls spaced 10µm apart) a Monte Carlo method with transmissions and
reflections of phonons at the domain boundaries was employed [9, 10]. This calculation
is rather complicated because the transmission and reflection rates of phonons at a single
interface depend on the phonon mode and incident angle. Moreover, the mode-conversions
among three phonon polarizations happen at each interface. Our present formulation based
on the Fourier-expansion method yields the phonon fields and the associated group velocities
without invoking the transmission and reflection processes at layer interfaces. Thus the
phonon images obtained automatically include the effects of phonon scatterings at the
interfaces of the multilayered structures.

The images of phonons plotted in the present work do not contain any information
about the phonon arrival times. The time-gated images should provide more detailed caustic
structures depending on the phonon polarizations and also exhibit the predicted deformation
of the group-velocity surfaces associated with the vanishing of the group-velocity component
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in the growth direction. The study of the time-resolved phonon images in superlattices will
appear elsewhere.
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